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Final Report for ARMY STIR Grant W911NF-10-1-0360: Inferring Implicit
Human Social Network Structure from Multi-modal Data

Summary:

This proposal was a 9-month STIR that explored the development of algorithms with
provable guarantees for Markov Random Fields (graphical models) structure learning,
with applications to social networks.

Markov Random Fields (MRFs), a.k.a. Graphical Models, serve as popular models for
networks in the social and biological sciences, as well as communications and signal
processing. A central problem is one of structure learning or model selection: given
samples from the MRF, determine the graph structure of the underlying distribution.
When the MRF is not Gaussian (e.g. the Ising model) and contains cycles, structure
learning is known to be NP hard even with infinite samples. Existing approaches
typically focus either on specific parametric classes of models, or on the sub-class of
graphs with bounded degree; the complexity of many of these methods grows quickly in
the degree bound. We develop a simple new ‘greedy’ algorithm for learning the structure
of graphical models of discrete random variables. It learns the Markov neighborhood of a
node by sequentially adding to it the node that produces the highest reduction in
conditional entropy.

In our work, we provide a general sufficient condition for exact structure recovery (under
conditions on the degree/girth/correlation decay), and study its sample and computational
complexity. We then consider its implications for the Ising model, for which we establish
a self-contained condition for exact structure recovery.

Further, we present numerical results that highlight the applicability of this approach for
social network relationship learning. The results summarized in this document are
elaborated in much greater technical depth in the included technical report. An early
version of some of the results that resulted from this STIR are presented in:

P. Netrapalli, S. Banerjee, S. Sanghavi, and S. Shakkottai. Greedy learning of Markov
network structure. In 48th Annual Allerton Conference on Communication, Control and
Computing, pages 1295 —1302, Sept. 29 - Oct. 1 2010.

Outline of Results in the Technical Report:

1. Algorithm: A greedy algorithm is proposed for learning (pp. 7) that takes as input,
samples from the MRF and outputs the graph structure. This is done in a sequential and
greedy manner, where a node at each time adds a single additional node as a neighbor
that most decreases its conditional entropy conditioned its neighborhood.

2. Result: Under non-degeneracy, degree bounds, and correlation decay assumptions, we
show that this algorithm recovers the correct graphical model structure. We further show
that an Ising model (with some assumptions) satisfy these conditions, see Theorem 7, pp.



14 in the included technical report.

3. We study the applicability of the algorithm for the well-known senator voting records
dataset (see pp. 16, and O. Banerjee et. al. pp. 18), and demonstrate that the algorithm
recovers our intuition on voting patterns (e.g., same state senators tend to vote together,
same part senators tend to vote together); however, the algorithm does so purely based on
the data and with no “side information” on political knowledge. Further, the algorithm
reveals the senators who tend to vote “across the aisle”. See plot below, and also pp. 20
of the attached technical report.

Lieberman (ID-CT)

Udall (D-NM)

McCaskill (D-MO)

R —
\ 4{\‘\\
Z-(B-IN Yoanrs ,}‘)}

Isakson (R-GA)

Figure 1: Following the approach in Banerjee et al., 2008, we present an application of
our algorithm to model senator interaction graph using the senate voting records. Blue
nodes represent democrats, red nodes represent republicans and black node represents an
independent. We use a value of 0.05 for ¢ in the algorithm. We can make some
preliminary observations from the graph. Most of the democrats are connected to other
democrats and most of the republicans are connected to other republicans (in particular,
the number of edges between democrats and republicans is approximately 0.1 fraction of
the total number of edges). The senate minority leader, McConnell, is well connected to
other republicans where as the senate majority leader, Reid, is not well connected to other
democrats. Sanders and Lieberman, both of who caucus with democrats have more edges
to democrats than to republicans. We use the graph drawing algorithm of Kamada and
Kawai to render the graph (Kamada and Kawai, 1989).
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Abstract

Markov Random Fields (MRFs), a.k.a. Graphical Models, serve as popular models for
networks in the social and biological sciences, as well as communications and signal pro-
cessing. A central problem is one of structure learning or model selection: given samples
from the MRF, determine the graph structure of the underlying distribution. When the
MRF is not Gaussian (e.g. the Ising model) and contains cycles, structure learning is
known to be NP hard even with infinite samples. Existing approaches typically focus ei-
ther on specific parametric classes of models, or on the sub-class of graphs with bounded
degree; the complexity of many of these methods grows quickly in the degree bound. We
develop a simple new ‘greedy’ algorithm for learning the structure of graphical models of
discrete random variables. It learns the Markov neighborhood of a node by sequentially
adding to it the node that produces the highest reduction in conditional entropy. We pro-
vide a general sufficient condition for exact structure recovery (under conditions on the
degree/girth/correlation decay), and study its sample and computational complexity. We
then consider its implications for the Ising model, for which we establish a self-contained
condition for exact structure recovery.

1. Introduction

Markov Random Fields (MRF) are undirected graphical models which are used to encode
conditional independence relations between random variables. At a more abstract level,
a graphical model captures the dependencies between a collection of entities. Thus the
nodes of a graphical model may represent people, genes, languages, processes, etc., while
the graphical model illustrates certain conditional dependencies among them (for example,
influence in a social network, physiological functionality in genetic networks, etc.). Often
the knowledge of the underlying graph is not available beforehand, but must be inferred
from certain observations of the system. In mathematical terms, these observations corre-
spond to samples drawn from the underlying distribution. Thus, the core task of structure
learning is that of inferring conditional dependencies between random variables from i.i.d
samples drawn from their joint distribution. The importance of the MRF in understanding

*. The results in this paper were presented in (Netrapalli et al., 2010) without proofs of the theorems. This
paper includes all the proofs along with simulations.



the underlying system makes structure learning an important primitive for studying such
systems.

More specifically, an MRF is an undirected graph G(V, E), where the vertex set V =
{vi,v2,...,vp} corresponds to a p-dimensional random variable X = {X;,Xo,...,X,}
(whereby each vertex ¢ is associated with variable X;), and the edges encode the condi-
tional dependencies between the random variables (this is explained in detail in Section 2).
A structure learning algorithm takes as input, samples drawn from the distribution of X,
and outputs an estimate G of the underlying MRF. There are three primary yardsticks for
a structure learning algorithm:- correctness, sample complexity and computational com-
plexity. The three are interdependent, and in a sense an ideal structure learning algorithm
is one which can learn any underlying graph on the nodes with high probability (or with
probability of error less than some given §, analogous to the PAC model of learning) with
associated sample complexity and computational complexity polynomial in p and %. How-
ever, it is known that the general structure learning problem is a difficult problem, both
in terms of sample complexity (Santhanam and Wainwright, 2009; Bento and Montanari,
2009) and computational complexity (Srebro, 2003; Bogdanov et al., 2008). Inspite of this,
the practical importance of the problem has motivated a lot of work in this topic, and there
are several approaches in the literature that, although not optimal, perform well (both in
practice, and also theoretically) under some stronger constraints on the problem.

There are two fundamental ways to perform structure learning, corresponding to two
different interpretations of a graphical model. Under certain conditions (given by the
Hammersley-Clifford theorem (Wainwright and Jordan, 2008)), the conditional indepen-
dence view of a graphical model leads to a factorization of the joint probability mass func-
tion (or density) according to the cliques of the graph. Parameter estimation techniques
(Ravikumar et al., 2010; Banerjee et al., 2008) utilize such a factorization of the distribution
to learn the underlying graph. These techniques assume a certain form of the potential func-
tion, and thereby relate the structure learning problem to one of finding a sparse maximum
likelihood estimator of a distribution from its samples. On the other hand, algorithms based
on learning conditional independence relations between the variables, which we refer to as
comparison tests, are potential agnostic, i.e., they do not need knowledge of the underlying
parametrization to learn the graph. These methods are based on comparing all possible
neighborhoods of a node to find one which has the ‘maximum influence’ on the node. In
both cases, in order to learn the underlying graph accurately and efficiently, the algorithms
need some assumptions on the underlying distribution and graph structure. There are sev-
eral existing comparison test based methods (Chow and Liu, 1968; Abbeel et al., 2006;
Bresler et al., 2008; Anandkumar and Tan, 2011a,b), each with associated conditions under
which they can learn the graph correctly.

In addition to the difference in underlying assumptions, there is another fundamental
difference in the philosophy of the two approaches. The parameter estimation techniques
tend to be ‘bottom-up’ approaches, whereby the algorithm is proposed first, based on some
intuition regarding the system, and then subsequently it is analyzed and conditions are
found for correctness and efficiency. On the other hand, the comparison-test techniques in
literature tend to be designed with the aim of achieving some correctness requirements. As a
result, comparison-test algorithms usually involve a computationally expensive search over
all potential neighborhoods of a node, and this increases their computational complexity.



In addition, although these algorithms make no assumptions on the parametrization of the
distribution, they need to assume some properties of the graph in order to succeed (for
example, the algorithm of Bresler et. al. (Bresler et al., 2008) needs to know the maximum
degree of the graph in order to learn it). Our contribution in this work is to propose a
simple ‘greedy’, comparison-test based algorithm for learning MRF structure. As in any
sub-optimal greedy algorithm, we can not always guarantee correctness, but are guaranteed
low computational complexity. However, we are able to provide general sufficient conditions
for the success of the algorithm for any graphical model, and show that these conditions are
in fact satisfied by one specific graphical model of significance in literature: the pairwise
symmetric binary model, or the Ising model.

Greedy comparison-tests for exact structure learning are however not completely new,
and in fact one of the early successes in the field was in the form of a greedy algorithm. In
their seminal paper, Chow and Liu (Chow and Liu, 1968) showed that if the MRF was a
tree, then it could be learnt by a simple maximum spanning tree algorithm. However their
method is crucially dependent on the underlying graph being a spanning tree (although
recent results (Tan et al., 2010) have shown how it can be modified to learn general acyclic
graphs), and fails as soon as the graph has loops. Our algorithm, in some sense, generalizes
the Chow and Liu algorithm to a richer class of graphs. This is in spirit similar to the
manner in which loopy belief propagation extends the dynamic programming paradigm
from trees to loopy graphs. One notes however that unlike the Chow and Liu algorithm
which searches for a globally optimal graph, ours is a locally greedy algorithm, whereby we
learn the neighborhood of each node separately in a greedy manner.

The remaining sections are organized as follows. In Section 2, we review graphical models
and some results from information theory, and set up the structure learning problem. Our
new structure learning algorithm, GreedyAlgorithm(e), is given in Section 3. Next, in
Section 4, we develop a sufficient condition for the correctness of the algorithm for general
graphs. To demonstrate the applicability of this condition, we translate it into equivalent
conditions for learning an Ising model in Section 5. We present simulation results evaluating
our algorithm in Section 6. We discuss future work and conclude in Section 7. The proofs
of theorems are in the Appendix.

2. Preliminaries

In this section, we formally define a graphical model and set up the structure learning
algorithm. In addition, as a foreshadow to our structure learning algorithm, we define
conditional entropy, and state some of its properties which we use later. We also define
a notion of ‘empirical’ conditional entropy which we later use as our test function, and
state an important lemma from information theory that helps relate empirical entropy and
empirical measures. For more details regarding graphical models, refer to (Wainwright and
Jordan, 2008), and for the information theoretic definitions, refer to (Cover and Thomas,
2006).

First we establish some notation that we use throughout. We assume in this paper
that the random vector X whose graph we are trying to learn is discrete valued. More
specifically, we assume that X is an n-dimensional random vector {X1, Xo,..., X}, where
each component X; of X takes values in a finite set X'. We use the shorthand notation



P(z;) to stand for P(X; = x;),z; € X, and similarly for a set A C {1,2,...,n}, we define
P(x4) 2P(XA =14),2, € X4, where X4 2 {X;|i € A}.

2.1 Graphical Models and Structure Learning

As mentioned before, an undirected graphical model corresponding to a probability distribu-
tion is specified by an undirected graph G = (V, E), with each vertex v; € V' corresponding
to a random variable X; which is a component of a p-dimensional random vector X (for ease
of notation, henceforth when we mention a node, we refer to the physical node in the graph,
and the associated random variable. The exact meaning should be clear from the context).
The edges E C V x V of a graphical model can be viewed as encoding the probability dis-
tribution of X in several ways, all of which are equivalent under certain conditions. For the
purposes of structure learning, an important interpretation is the local Markov property,
stated below.

Definition 1 (Local Markov) Given G(V,E), let N(i) = {j € V|(i,j) € E} denote the
neighborhood of node ©. Then a random vector X is said to obey the local Markov property
with respect to the graph G if for every X; € V, conditioned on the nodes in the neighborhood
of ©, the node i is independent of the remaining nodes in the graph. Mathematically, this
means that for any set B € V' \ {i} U N(i), we have that P(zi|zng), v8) = P(xilrNng)) for

. XN )
all (zi, NG, TB) € XUHINODIHIBl . We henceforth write this as X; 1L Xy {iJUN (i) -

Finally, the structure learning problem is stated formally as follows: given n i.i.d. sam-
ples drawn from a random variable X with MRF G, give a learning algorithm and associated
conditions such that the hypothesis of the algorithm, é, is equal to the true MRF G with
probability greater than 1 — 9.

2.2 Factor Graphs

Every graphical model has a factor graph representation defined as follows.

Definition 2 (Factor Graph) Given a graphical model G(V, E) its factor graph is a bi-
partite graph Gy with vertex set VU C where each vertex ¢ € C' corresponds to a mazimal

clique in G. For anyv € V and c € C, there is an edge {v,c} in Gy if and only if v € c in
G.

We have the following simple lemma relating the distance between two nodes 7,5 € V in
the graphs G and G/.

Lemma 1 Given a graph G, let Gy be its factor graph. Then for every i,j5 € V we have
dg(i,j) = 2d(i,j) where d and dy are the distances between i and j in G and Gy respectively.

2.3 Conditional Entropy Tests

As we described before in the introduction, a comparison-test based method of structure
learning is based on using a test function to compare candidate graphs. Although there are
several different implementations, they are all based on the local Markov interpretation of



the graph. More specifically, most comparison-test algorithms try to learn the neighbor-
hood of each individual node by comparing potential neighborhoods using a test function.
Following the approach of Abbeel et. al.(Abbeel et al., 2006), we use conditional entropies
as our test function for selecting nodes. In this section, we provide the necessary definitions,
and also state some results from information theory that underlies our approach.

First we need to define a few quantities which we use throughout this paper. Given a
discrete-valued random variable Y taking values in a finite set ) such that P(Y = y) =
py > 0Vy € Y, and given n i.i.d samples {Y(i)}?zl, the empirical probability mass function
ﬁ(y),y € ) is defined as,

~

1 n
P(y) = o Zﬂ{ym:y}, Vyel.
i=1

The empirical entropy H (Y) is defined as the entropy of the empirical distribution P.
Next, given two variables Y7, Ys, both taking values in )}, we can extend this notation
to define empirical conditional measures of the form

Yol (@)
= {Y1 :yl’YQ =y2}

P(yly2) = Y (y1,2) € V2.

n .
2 Ly
Finally, for fixed yo € ) we define empirical conditional entropy

H(1[Y2 =y2) == Y P(yily2) log P(w1]y2),
y1€Y

and using this we define,

H(Y1|Y2) = > P(y2) H(Yilyo)
y2€Y

Given samples, we use the empirical conditional entropies as given above as the proxy for
the actual conditional entropy. Note also that we can define set based versions of all the
above statements in a similar manner.

The use of conditional entropies as a test function is motivated by two reasons:

1. By the local Markov property, the conditional entropy for a node is minimized by sets
which contain the true neighborhood, and hence (under some weak non-degeneracy
conditions), the smallest cardinality set which minimizes the conditional entropy is
the true neighborhood.

2. Entropy and measure are related in the sense that two probability measures on a set
are close if their entropies are close and vice versa.

The first point is the main reason behind using conditional entropies as a test function, as it
reduces the problem of finding a neighborhood to that of finding a set which minimizes an
appropriate function, and also indicates a natural greedy sequential approach to selecting
the neighbors. We encode this notion in the following proposition, which can be easily
derived from the Data Processing Inequality, see (Cover and Thomas, 2006).



Proposition 1 For any node i € V, we have that,
H(Xi| Xn@)) < H(Xi|Xa),
for any set A C V \ {i}.

The second point can be thought of as indicating that no information is lost if we use
entropies instead of measures to learn the structure. This notion can be quantified in terms
of the following proposition, which we get by combining Theorem 16.3.2 and Lemma 16.3.1
from (Cover and Thomas, 2006).

Proposition 2 Let P and Q) be two probability mass functions in a finite set X, with
entropies H(P) and H(Q) respectively, and with total variational distance ||P — Q||1 given
by:
1P=Qlh = 3 P() - Q).
TEX

Then

wuw—H@ﬂ54W—QmeP@fm. 1)

Further, if the relative entropy between them is given by D(P||Q), then

D(P||Q) 1P — QI3 (2)

>
~ 2log?2

We use this proposition in several places in subsequent proofs. At a high level, (1)
allows us to leverage results of convergence of empirical measures to the true measure to
obtain similar guarantees on the empirical entropy, while (2) is used to convert entropy
conditions to equivalent conditions on the measure (in particular, this allows us to state
our non-degeneracy conditions directly in terms of the conditional entropy, instead of more

complicated statements in terms of probability distributions usually found in literature
(Bresler et al., 2008)).

3. The GreedyAlgorithm(e) Structure Learning Algorithm

In this section, we present our greedy structure learning algorithm, which we henceforth
refer to as

GreedyAlgorithm(e). We also argue that it always has a low worst-case computation com-
plexity, owing to its greedy nature. The challenge however is to find conditions that guar-
antee correctness, and this question is addressed in subsequent sections.

At a high level, our algorithm considers each node separately, and adds nodes to its
neighborhood sequentially in a greedy manner. In particular, at each step we find the node
that provides the highest reduction in conditional entropy when added to the existing set.
We stop when this reduction is smaller than e.

More specifically, GreedyAlgorithm(e) takes as input the n samples and a single ‘thresh-
old’ value €. Given any node i, the candidate neighborhood N (i) of the node is initially set
to ¢ and is learnt in a sequential manner. In the first stage, the node j # ¢ which minimizes

~

the conditional entropy H(X;|X;) is chosen as a candidate neighbor, and is added to NN (7)



if conditioning on the node j reduces the entropy by at-least €/2. In any subsequent stage,
a candidate node k € V' \ N(z) is chosen as one which minimizes H (X;| X, Hﬁ(i))’ and is
added if it reduces the conditional entropy by at-least € /2. At any stage when this condition
is not satisfied, the algorithm outputs N (i) and moves on to the next node.
GreedyAlgorithm(e) for structure learning is formally presented in Algorithm 1.

Algorithm 1 GreedyAlgorithm(e)
1: forieV do
2:  complete < FALSE
3 N(i)« @
4:  while !complete do
5 j = argmin H(X; | Xﬁ(i),Xk:)
keEV\N (i)

6 if H(X, | X, Xj) < H(X; | Xg(;)) — § then
7. N(i) + N(@@) U {j}

8: else

9: complete < TRUE

10: end if

11:  end while

12: end for

Since the algorithm is greedy, we can characterize its worst case computational com-
plexity independent of its correctness guarantees.

Proposition 3 The running time of Algorithm 1 is O(np*) where n is the number of sam-
ples and p is the number of random variables.

Proof The outer for loop is executed O(p) times. For every iteration of the outer for
loop, the while loop (lines 4-11) is run O(p) times. In every iteration of the while loop, line
5 calculates the empirical entropy conditioned on each of the nodes in N (7). Thus, in the
worst case, the algorithm performs O(p?) comparison tests (empirical conditional entropy
calculation from samples). Even assuming a naive implementation of a single comparison
test that takes O(np), the overall time taken by the algorithm is O(np?). ]

This shows that GreedyAlgorithm(e) always has low computational complexity for any
graph (and in particular, in Section 4, we show that for a large class of graphs, the algorithm
has running time of O(np?)). The tradeoff is however in correctness guarantees. The
problem arises in the fact that unlike other comparison-test algorithms which are designed
to ensure certain correctness guarantees, our algorithm is designed more from the point of
view of simplicity and low computational costs. Therefore to derive theoretical guarantees
for the algorithm, it is first important to understand the failure mechanism of the algorithm.

4. Sufficient Conditions for General Discrete Graphical Models

In this section, we provide guarantees for general discrete graphical models, under which
GreedyAlgorithm(e) recovers the graphical model structure exactly. First, using an exam-



ple, we build up intuition for the sufficient conditions, and define two key notions: non-
degeneracy conditions and correlation decay. Our main result is presented in Section 4.2,
wherein we give a sufficient condition for the correctness of the algorithm in general discrete
graphical models.

4.1 Non-Degeneracy and Correlation Decay

Before analyzing the correctness of structure learning from samples, a simpler problem worth
considering is one of algorithm consistency, i.e., does the algorithm succeed to identify the
true graph given the true conditional distributions (or in other words, given an infinite
number of samples). It turns out that the algorithm as presented in Algorithm 1 does not
even possess this property, as is illustrated by the following counter-example
Let V ={0,1,--- ,D,D+1}, X; € {—-1,1}Vi € Vand F = {{0,i},{i,D+ 1} | 1 <i < D}.
Let P(xy) = % H e where Z is a normalizing constant (this is the classical zero-
{ijteE
field Ising model potential). The graph is shown in Fig. 1.

1

I

D

Figure 1: An example of adding spurious nodes: Execution of GreedyAlgorithm(e) for node
0 adds node D + 1 in the first iteration, even though it is not a neighbor.

Suppose the actual entropies are given as input to Algorithm 1. It can be shown in
this case that for a given 6, there exists a Dy} oo such that if D > Dipiaqp, then the
output of Algorithm 1 will select the edge {0, D + 1} in the first iteration. This is easily
understood because if D is large, the distribution of node 0 is best accounted for by node
D + 1, although it is not a neighbor. Thus, even with exact entropies, the algorithm will
always include edge (0, D + 1), although it does not exist in the graph.

The algorithm can however easily be shown to satisfy the following weaker consistency
guarantee: given infinite samples, for any node in the graph, the algorithm will return a
super-neighborhood, i.e., a superset of the neighborhood of i. This suggests a simple fix to
obtain a consistent algorithm, as we can follow the greedy phase by a ‘node-pruning’ phase,
wherein we test each node in the neighborhood of a node i returned by the algorithm (to do
this, we can compare the entropy of 7 conditioned on the neighborhood with and without
a node, and remove it if they are the same). However the problem is complicated by the
presence of samples, as pruning a large super-neighborhood requires calculating estimates
of entropy conditioned on a large number of nodes, and hence this drives up the sample
complexity. In the rest of the paper, we avoid this problem by ignoring the pruning step,



and instead prove a stronger correctness guarantee: given any node ¢, the algorithm always
picks a correct neighbor of ¢ as long as any one remains undiscovered. Towards this end,
we first define two conditions which we require for the correctness of GreedyAlgorithm(e).

Assumption 1 (Non-degeneracy) Choose a nodei. Let N(i) be the set of its neighbors.
Then Je > 0 such thatV A C N(i),Vje N(i)\ A and V1 e N(j)\ {i}, we have that
H(X;| Xa)—H(X; | Xa,X;) > € and (3)

H(XZ‘|XA,X1)—H(XZ‘|XA,XJ‘,XZ)>6 (4)

Assumption 1 is illustrated in Fig. 2.

Figure 2: Non-degeneracy condition for node i: (¢) Entropy of i conditioned on any sub-
neighborhood A reduces by at-least e if any other neighbor j is added to the
conditioning set, (i) Entropy of i conditioned on A and a two hop neighbor [
reduces by at-least e if the corresponding one hop neighbor j is added to the
conditioning set

Assumption 2 (Correlation Decay) Choose a node i. Let N(i) and N2(i) be the sets
of its 1-hop and 2-hop neighbors respectively. Choose another set of nodes B. Let d(i, B) =
mig d(i,7), where d(i,j) denotes the distance between nodes i and j. Then, we have that
j€

vxi? le(i)vx]\ﬂ(i)') rp

|P(zi, 231y, Tz | ©B) — Pl oy, 2n2))| < f(d(i, B))
where f is a monotonic decreasing function.

Assumption 1 (or a variant thereof) is a standard assumption for showing correctness
of any structure learning algorithm, as it ensures that there is a unique minimal graphical
model for the distribution from which the samples are generated. Although the way we
state the assumption is tailored to our algorithm, it can be shown to be equivalent to
similar assumptions in literature(Bresler et al., 2008). Informally speaking, Assumption 1
states that for node ¢, any 2-hop neighbor captures less information about node ¢ than the
corresponding 1-hop neighbor. In the case of a Markov Chain, Assumption 1 reduces to a



weaker version of an e—Data Processing Inequality (i.e., DPI with an epsilon gap), and in
a sense, Assumption 1 can be viewed as a generalized e—DPI for networks with cycles.

On the other hand, Assumption 2 along with large girth implies that the information a
node j has about node ¢ is ‘almost Markov’ along the shortest path between ¢ and j. This
in conjunction with Assumption 1 implies that for any two nodes ¢ and k, the information
about i captured by k is less than that captured by j where j is the neighbor of i on the
shortest path between ¢ and k.

4.2 Guarantees for the Recovery of a General Graphical Model

We now state our main theorem, wherein we give a sufficient condition for correctness of
GreedyAlgorithm(e) in a general graphical model.

The counter-example given in Section 4.1 suggests that the addition of spurious nodes
to the neighborhood of ¢ is related to the existence of non-neighboring nodes of ¢ which
somehow accumulate sufficient influence over it. The accumulation of influence is due to
slow decay of influence on short paths (corresponding to a high # in the example), and
the effect of a large number of such paths (corresponding to high D). Correlation decay
(Assumption 2) allows us to control the first. Intuitively, the second can be controlled if
the neighborhood of i is ‘locally tree-like’. To quantify this notion, we define the girth of
a graph Girth(G) to be the length of the smallest cycle in the graph G. Now we have the
following theorem.

Theorem 2 Consider a graphical model G where the random wvariable corresponding to
each node takes values in a set X and satisfies the following:

e Non-degeneracy (Assumption 1) with parameter e,
e Correlation decay (Assumption 2) with decay function f(-),

o Maximum degree D.

_ 2
Define h = h(e,D) = w and suppose f~Y(h) exists. Further suppose Gy (the
factor graph of G) obeys the following condition:

Girth(Gy) = g >4 (f 1 (h) +1). (5)

Then, given 6 > 0, GreedyAlgorithm(e) recovers G exactly with probability greater than 1—§
with sample complexity n = & (6_4 log %), where £ is a constant independent of p,e and §.

The proof follows from the following two lemmas. Lemma 3 implies that if we had access to
actual entropies, Algorithm 1 always recovers the neighborhood of a node exactly. Lemma
4 shows that with the number of samples n as stated in Theorem 2, the empirical entropies
are very close to the actual entropies with high probability and hence Algorithm 1 recovers
the graphical model structure exactly with high probability even with empirical entropies.

Lemma 3 Consider a graphical model G in which node i satisfies Assumptions 1 and 2.
Let the girth of Gy be g5 > 4 (f*1 (h) + 1), where h is as defined in Theorem 2. Then,
VACN(i), w¢g N(i), 35 € N(i) \ A such that

3€
H(Xz-\XA,Xj)<H(XZ~]XA,Xu)—Z (6)

10



Proof If A separates i and u in G it also does so in G. Then we have that P(z;|za, z,) =
P(z;|x4) and hence H(X; | Xa,Xy) = H(X; | X4). Then, the statement of the lemma
follows from (3).

Now suppose A does not separate ¢ and v in G'y. Consider the shortest path between 4
and u in Gy \ A. Let j € N(i)\ Aand [ € N(j) \ {i¢} be on that shortest path. Assumption
1 implies that H(X; | Xa,X;) — H(X; | Xa, X;, X)) > €. Now choose B € V such that
AU BU{j} separates ¢ and [ in Gy and ds(i, B) > 55—, where gy is the girth of Gy.
Note that such a B (possibly empty) exists since the glrth of G is gy and if a node in the
separator is a factor node (i.e., not in V') then we can replace it by all its neighbors (in V).
We then see using Lemma 1 that d(i, B) > gfff. From Assumption 2, we know that

|P(zi, N unz@) — Pl enaonzey | 28)| < f (5 —1)

= Z \P(zi, x4, ) — Plai, xa,2; | 2p)] < | x|+ f(zf ) Vg
T4, T A,Lj

= H(X;, Xa, X;) = H(X;, Xa, X; | Xp) < —!X\“””Z fOE—1) (log f (% —1)) £
= (H(X; | Xa, X;) + H(Xa, Xj)) — (H(X; | Xa,X;, Xp) + H(Xa, X; | Xp)) <€

e H(X) | X, X;) — H(X: | Xas X, Xp) < €.

where the first implication follows from marginalizing irrelevant variables and the second
implication follows from (1). Using this we have that,

H(X; | Xa, X5, X1) > H(X; | Xa, Xj, Xy, Xp)
Xa,X;,XB
= H(X; | X4, X;,Xp) since X; A X
> H(Xz ’ XA7Xj) —€

Using a similar argument, we also have,

H(X; | Xa, X1, Xy) > H(X; | Xa, X)) —€
Combining the two inequalities, and using the fact that under the given conditions € < g,
we get,

e
H(X; | Xa,X;) < H(X; | Xa, Xu) — —.

Lemma 4 Consider a graphical model G in which each node takes values in X. Let the
number of samples be

n > 215¢=4| y[4(D+2) ((D +2)log 2|X]| + 2log %9)
Let P and H denote the empirical probability and empirical entropy as defined in Section

2.5.
Then ¥ i € G, with probability greater than 1 — %, we have that V' A C N(i), u ¢ N(i)

H(Xi | X4, X,) — H(Xi | Xa,X4)| <

ool m



Proof We use the fact that given sufficient samples, the empirical measure is close to the
true measure uniformly in probability. Specifically, given any subset A C V' of nodes and
any fixed 24 € X4 we have by Azuma’s inequality after n samples,

20
p?(2]X[) P+

~

P HP(:UA) — P(xA)‘ > ’y] < 2exp(—27°n) <

where v = 278¢2|X|72(P+2) | Let V be the set of all vertices. Now, by union bound over
every A C N(i), u € V and x;, x4, x,, we have

P HP(a:i,acA, Ty) — ﬁ(l’z‘?ﬂ?A, Ty)

J
Ly <d

p
(1) then implies

P HH(XZ- | X, Xo) — H(X: | Xa, Xu)

giving us the required result. |

Using Lemmas 3 and 4, we have the following : V i € G, such that Assumptions 1 and 2 are
satisfied, with probability greater than 1 — %, we have that V A C N(i), u ¢ N(i), 3 j €
N(i) \ A such that

~ ~ €
H(X; | Xa,X;) < HX; | Xa, Xu) = 5 (7)

and V i € G, such that Assumptions 1 and 2 are satisfied, VA C N(i), j € N(i) \ 4, we
have that ]
H(X; | Xa,X;) < H(X; | Xa) = 5 (8)

Proof [Theorem 2] The proof is based on mathematical induction. The induction claim
is as follows: just before entering an iteration of the WHILE loop, N (1) € N(i). Clearly
this is true at the start of the WHILE loop since N(z) = ®. Suppose it is true just
after entering the kt iteration. If ]/\\7(1) = N(i) then clearly Vj € V \ ]V(z), H(X; |
Xﬁ(i),Xj) = H(X; | Xﬁ(i))' Since with probability greater than 1 — % we have that
‘H(Xi | X Xj) — H(X; | Xﬁ(i),xj)’ < £and ‘H(XZ- | Xg) — H(Xi | Xg,)| < & we

also have that ‘f[(XZ | Xﬁ(i)7Xj) — H(X; | Xﬁ(i))’ < §. So control exits the loop with-

out changing J\Af(z)/\ On the other hand, if 3j € N(i) \ N(i) then from (8) we have that
H(X; | Xﬁ(i)) - H(X; | Xﬁ(i),Xj) > 5. So, a node is chosen to be added to N (i) and
control does not exit the loop. Now suppose for contradiction that a node u ¢ N(i) is added
to N(i). Then we have that H (X | Xﬁ(i),Xu) < H(X; | Xﬁ(i),Xj). But this contradicts
(7). Thus, a neighbor j € N(i)\ N(7) is picked in the iteration to be added to N(i), proving
that the neighborhood of ¢ is recovered exactly with probability greater than 1 — %' Using
union bound, it is easy to see that the neighborhood of each node (i.e., the graph structure)
is recovered exactly with probability greater than 1 — é. |

12



Remark 5 The proof for Theorem 2 can also be used to provide node-wise guarantees, i.e.,
for every node satisfying Assumptions 1 and 2, if the number of samples is sufficiently large
(in terms of its degree, and the length of the smallest cycle it is part of ), its neighborhood
will be recovered exactly with high probability.

Remark 6 Any decreasing correlation-decay function f suffices for Theorem 2. However,
the faster the correlation decay, the smaller the girth in the sufficient condition for Theorem
2 needs to be.

And finally we have a corollary for the computational complexity of GreedyAlgorithm(e).

Corollary 1 The expected run time of Algorithm 1 is O (5np4 +(1- 5)D2np2). Further,
if § is chosen to be O(p™?), the sample complexity n is O(logp) and the expected run time
of Algorithm 1 is O(D?*p?logp).

Proof For the second part, note that with probability greater than 1 — §, the algorithm
recovers the correct graph structure exactly. In this case, the number of iterations of the
while loop is bounded by D for each node . The time taken to compute any conditional
entropy is bounded by O(nD). Hence the total run time is O(D?np?). Using the previous
worst case bound on the running time, we obtain the result. |

5. Guarantees for the Recovery of an Ising Graphical Model

In this section, we show how Theorem 2 can be used to efficiently learn Ising graphical
models satisfying certain conditions. The zero field Ising model is a pairwise, symmetric,
binary graphical model which is widely used in statistical physics to model the alignment
of magnetic spins in a magnetic field (Brush, 1967). It is defined as follows:

Definition 3 A set of random variables {X, | v € V'} are said to be distributed according
to a zero field Ising model if

1. Xy e{-1,1} Yo eV and

2. P(l‘v) = % H exp(@ijxixj)
i,jeEV
where Z is a normalizing constant. The graphical model of such a set of random variables
is given by G(V, E) where E = {{i,j} | 0;; # 0}.

It is easy to verify that this satisfies the local Markov property. Another very useful property
of zero-field Ising models is that they are symmetric with respect to —1 and 1. Formally, if
P is the probability distribution function over a set of zero-field Ising distributed random
variables, then, P(xy) = P(—zy).

The main contribution of this section is in the form of the following theorem, which
translates the sufficient conditions from Section 4 to equivalent conditions for an Ising
model.

13



Theorem 7 Consider a zero-field Ising model on a graph G with mazimum degree D.
Let the edge parameters 0;; be bounded in the absolute value by 0 < B < |6;;| < 1;%2. Let

€ £ 27106inh?(2p). If the girth of the graph satisfies g > 1«2;52 {D?log2 — log (sinh 23)} then

with samples n = e *log & (where & is a constant independent of €,9,p), GreedyAlgorithm(e)
outputs the exact structure of G with probability greater than 1 —§.

The proof of this theorem consists of showing that an Ising graphical model satisfies
Assumptions 1 and 2 if the graph has large girth and the parameters on the edges satisfy
certain conditions. It also uses the fact that the girth g; of G is at least 2g. In Section 5.1,
we show that under certain conditions, an Ising model has an almost exponential correlation
decay. Then in Section 5.2, we use the correlation decay of Ising models to show that under
some further conditions, they also satisfy Assumption 1 for non-degeneracy. Combining the
two, we get the above sufficient conditions for GreedyAlgorithm(e) to learn the structure of
an Ising graphical model with high probability.

5.1 Correlation Decay in Ising Models
We will start by proving the validity of Assumption 2 in the form of the following proposition.

Proposition 4 Consider a zero-field Ising model on a graph G with maximum degree D
and girth g. Let the edge parameters 6;; be bounded in the absolute value by |6;;] < 13%2.
Then, for any node i, its neighbors N'(i), its 2-hop neighbors N2(i) and a set of nodes A,

we have

log2 . )
|P(1:i,xN1(i),xN2(i) | x4) — P(xi,le(i),xNz(i))’ < cexp <—§ min <d(z,A), g — 1))

V @i, TNy, T2y and T4 (where ¢ is a constant independent of i and A).

The outline of the proof of Proposition 4 is as follows. First, we show that if a subset of
nodes is conditioned on a Markov blanket (i.e., on another subset of nodes which separates
them from the remaining graph), then their potentials remain the same. For this we have
the following lemma.

Lemma 8 Consider a graphical model G(V, E) and the corresponding factorizable probabil-
ity distribution function P. Let A, B and C be a partition of V and B separate A and C in
G. Let G(A U B, E) be the induced subgraph of G on AU B, with the same edge potentials
as G on all its edges and P be the corresponding probability distribution function. Then, we
have that P(xp | 2p) = P(zp | ) ¥ 2p,zp where D C A.

Now, for any node i, the induced subgraph on all nodes which are at distance less than
¢ —1is a tree. Thus we can concentrate on proving correlation decay for a tree Ising model.
We do this through the following steps:

1. Without loss of generality, the tree Ising model can be assumed to have all positive
edge parameters

2. The worst case configuration for the conditional probability of the root node is when
all the leaf nodes are set to the same value and all the edge parameters are set to the
maximum possible value

14



3. For this scenario, correlation decays exponentially

The following three lemmas encode these three steps. For proofs, refer the Appendix.

Lemma 9 Consider a tree Ising graphical model T'. Let the corresponding probability dis-
tribution be P. Replace all the edge parameters on this graphical model by their absolute
values. Let the corresponding probability distribution after this change be P. Then, there
exists a set of bijections

{M,: {-1,1} = {=1,1} |v € V\ {r}} where V is the set of vertices and r is the root node
such that, Vx,, xy\, we have that P(x,, zy\,) = P(x,, My(z,),v € V\ 7).

Lemma 10 For a tree Ising graphical model T with root v and set of leaves L, we have

(xr =1,z =1) € arg max |P(z, | x1) — P(x,)|

ZTr,T,

And finally we have the following lemma.

Lemma 11 In a tree Ising model, suppose |0;;] < v < 13%2 where D is the maximum
degree of the graph. Then we have exponential correlation decay between the root node r,
its neighbors N'(r), its 2-hop neighbors N%(r) and the set of leaves L i.e.,

log 2
‘P(xrale(r)vaQ(r) | zr) — P(:Umle('r)axN?(r))‘ < CGXP(—Td(ﬁ L))

where ¢ is a constant independent of the nodes considered.

5.2 Non-degeneracy in Ising Models with Correlation Decay

Now using the results from the previous section, we turn our attention to the question of
correlation decay. In particular, we have the following lemma which says that if an Ising
graphical model has almost exponential correlation decay and its edge parameters satisfy
certain conditions, then it also satisfies Assumption 1. For the proof, refer the Appendix.

Lemma 12 Consider an Ising graphical model with edge parameters 0;; bounded in the
absolute value by 0 < B < |0;| < v, maz degree D, and having correlation decay as follows

-2
‘P(ZL‘i,l‘Nl(i),LUNQ(i)) — P(l’i,{L’Nl(i),I'N2(i)|$B)‘ < cexp <—amin <d(i,B), g2>)

Vi, Bz, ki), T2y - If the girth g > 2+ %{(ZD + 11)log2 + log ¢ + log (1 + 2D627) +
29(D + 3) — log |sinh 20| }, then this graphical model satisfies Assumption 1 with € =
27 7e=67P sinh?(2p).

Finally, the proof of Theorem 7 follows directly by combining Theorem 2, Proposition
4 and Lemma 12. For complete details, refer the Appendix.
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6. Simulations

In this section, we present the results of numerical experiments evaluating the performance
of our algorithm. There are two important points to be noted here. The first is that to
satisfy the conditions so that our theoretical guarantees are applicable, the graph should
have a large girth. However, to demonstrate the fact that our algorithm is practical, we
evaluate our algorithm on graphs with much smaller girth than what is required for our
theoretical guarantees to hold. The second is that even when we satisfy the conditions for
our theoretical guarantees to be applicable, we are confronted with the question of choosing
€, which is an input to our algorithm. The nice behavior of our algorithm with respect to
€ provides a partial solution to this problem by allowing us to choose a typical € for the
experiments. However, this also motivates the question of how to choose the value of €
experimentally, which will be interesting to look at in future work.

In the first experiment, we consider an Ising model on a binary tree of depth 5 with a
few additional edges between the leaves. The graph is shown in Fig. 3(a). As remarked
earlier, this graph does not satisfy the conditions (on girth) for our theoretical guarantees to
be applicable. However, our algorithm seems to perform very well in learning this graphical
model. This is not surprising because the graph has a structure favourable to our algorithm
(i.e., large girth and moderate edge parameters, though they do not meet the conditions
for our guarantees to hold). Fig. 3(b) presents the plots of probability of success versus
number of samples of our algorithm for various values of €. Here, success is defined as
exact recovery of the graph structure. There seems to exist a threshold value of ¢, call it €
such that if € > € then the probability of success is very small and if € < €, probability of
success goes to 1 as the number of samples increases. This would suggest that the graph
under consideration in fact satisfies Assumption 1 with €. Fig. 4 presents the results of our
algorithm (using a typical value of €) comparing it to the algorithm in (Ravikumar et al.,
2010), which we will henceforth refer to as RWL.

In the second experiment, we evaluate our algorithm on grids of various sizes. Fig. 5
compares the sample complexity and computational complexity of our algorithm to RWL.
From the figure, it is clear that our algorithm has higher sample complexity but lower
computational complexity compared to RWL.

Finally, we present an application of our algorithm to model senator interaction graph
using the senate voting records, following (Banerjee et al., 2008). A Yea vote is treated as
a 1 where as a Nay vote or absentee vote is treated as —1. To avoid bias, we only consider
senators who have voted in a fraction of atleast 0.75 of all the bills during the years 2009
and 2010. The output graph is presented in Fig. 6.

7. Discussion

We developed a simple greedy algorithm for Markov structure learning. The algorithm is
simple to implement and has low computational complexity. We then showed that under
some non-degeneracy, correlation decay, maximum degree and girth assumptions on the
MRF, our algorithm recovers the correct graph structure with O(e=*log %) samples. We
then specialize our conditions to prove a self-contained result for the most popular discrete
graphical model - the Ising model.
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Figure 3: (a) The graph chosen for our experiments, binary tree with a few additional edges.
(b) Results of our algorithm for various values of e. The edge parameters (6;;) are
all chosen to be equal to 0.5. Success is defined as exact recovery of the structure.
The probability of success on the y-axis is calculated by averaging over 100 runs.
For a large value of €, the probability of success of our algorithm is equal to 0.
However, for smaller values of €, the probability of success goes to 1 as the number
of samples increases.

The success of our algorithm can be further improved by post-processing via pruning. In
particular, as mentioned, the neighborhood of a node as estimated by our algorithm always
includes the true neighborhood — but it may also include spurious nodes. The latter can be
then identified by checking each node of the estimated neighborhood, to see if it actually
provides a reduction in conditional entropy over and above all the other nodes. Analysis
of the improvement achieved by such a procedure is more challenging, but it may be likely
that doing so will reveal an algorithm that can handle much larger degrees and smaller
girths.
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Figure 4: (a) The edge parameters are all chosen to be equal to 0.5. (b) The edge parameters
are chosen uniformly at random from {—0.5,0.5}.
GA refers to our algorithm. The probability of success on the y-axis is calculated
by averaging over 100 runs. In both the cases, the sample complexity of our
algorithm is slightly higher than that of RWL. However, our algorithm is more
general (i.e., not specialized for an Ising model) and has lower computational
complexity than RWL.
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Figure 6: Blue nodes represent democrats, red nodes represent republicans and black node
represents an independent. We use a value of 0.05 for € in the algorithm. We
can make some preliminary observations from the graph. Most of the democrats
are connected to other democrats and most of the republicans are connected to
other republicans (in particular, the number of edges between democrats and
republicans is approximately 0.1 fraction of the total number of edges). The
senate minority leader, McConnell is well connected to other republicans where
as the senate majority leader, Reid is not well connected to other democrats.
Sanders and Lieberman, both of who caucus with democrats have more edges to
democrats than to republicans. We use the graph drawing algorithm of Kamada
and Kawai to render the graph (Kamada and Kawai, 1989).
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Appendix

We will first prove the lemmas required for proving Proposition 4

Proof [Lemma 9] The proof is by construction. For each node v € V', let M,(z,) = nyxy.
For the root node, let 7, £ 1. For any other node v, let u be the parent of v in the rooted
tree with root r. Define 7, £ g,z—’;'nu. Let ® and ® be the potential functions corresponding

to P and P respectively. Then,

O(xy) = H exp (Qup Ty Ty)
uveT

G'LLU
= H €xXp (‘euv‘ anxuxv>
uveT uv
= H eXp(!%\ N TuTy)
uveT
= H exp (|Ouy| My (zy) My (7))
nyT

= ®(xy, My(zy),v € V\ 1)

Since the potential functions are preserved by the bijections, so are the probabilities. |
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We will first prove the following lemma which will help us in proving Lemma 10.

Lemma 13 Consider a tree Ising graphical model T with root r, set of leaves L and all
positive edge parameters. Let P be its probability distribution. Then, the quantity P(X, =
1| X1 = xr) is monotonically increasing in x;, ¥ 1 € L. Moreover, P(X, =1| Xy =1) is
monotonically increasing in 0;; ¥ {i,j} € T

Proof For simplicity of notation, we define f(xy) = P(X, = 1| Xy = z1). Let us prove
the above statement by induction on the depth of the tree. For a tree of depth 1, we have

that
HGXP(GHIH)
. _ lEL
flos) HGXP(QNQH HEXP D)
leL leL
H exp(frz;)
leL,l#]
H exp(0r121) + exp(—26 ;) H exp(—0,12;)
l€LIA] leLI#]

Since 6 7> 0, f(xy) increases when zis changed from —1 to 1.

Now, suppose the statement is true for all trees of depth upto k. Consider a tree of
depth k + 1, with root r. Let N(r) be the set of children of r. For every ¢ € N(r), let T,
be the subtree rooted at ¢ with the same edge parameters as in T and L. be the leaves of
T.. Let P. be the probability measure corresponding to 7. and f.(z1,) = P.(z. =1 | xr,).

Then, the conditional probability of the root node can be written as

[T (exp(Ore) felwr.) + exp(=bre) (1 = fe(xr.)))
ceN(r)

flwr) = 5 9)

where

B= ] (exp(Bre)felzr.) +exp(=brc) (1 = felxr,))) +

ceN(r)
[T (exp(=brc)felar.) + exp(bre) (1 = folwr.)))
cEN(r)

(9) can now be manipulated to obtain (10).

Ky

f($L) xz)+exp(20,¢
Ko+ Ko St s

(10)
where gz(xz) = %, and K7 and K3 > 0 are independent of 7. and 6,z. Since K3 > 0

and 6,z > 0, f(xr) increases if fz(xr.) increases. So, for any leaf node, if its value changes
from —1 to 1, the corresponding fz(xr_) increases and hence f(x) increases, proving the
induction claim.
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Using the same induction argument as above and noting that f(xy =1) > %, it can be
seen that f(xzr = 1) is monotonically increasing in 6;; V{i,j} € T [ |

Proof [Lemma 10] We know that P(z,) = 3 for z, = +1. Clearly any z; that maxi-

mizes |P(x, | 1) — P(x,)| should either minimize or maximize P(x, | 7). Note also that

there is a one-one correspondence between such configurations (i.e., for every maximizing

configuration, there exists a minimizing configuration such that both of them maximize

|P(xy | xp) — P(x;)]). From Lemma 13, we know that x; = 1 maximizes P(x, = 1 | xp)

and by symmetry this should be the same as P(x, = —1 | 1, = —1) and equal max P(z, =
L

—1 | z1). So, we can conclude that |P(x, | z1) — P(z,)| is maximized by (z, = 1,z =1). B

Lemma 14 Consider a tree Ising model T with root node r, set of leaves L and maximum
degree D. Let P be its probability measure. Suppose the absolute values of the edge param-
eters are bounded by |0;;| < 13%2 vV {i,j} € T. Then, we have that |P(x, | 1) — P(z,)| <
exp(—10§2d(r, L)) Va,, xp.

Proof Using Lemmas 9, 10 and 13, we can assume without loss of generality that the pa-
rameters 0;; on all the edges are positive and equal to 13%2 (which is the maximum possible
value), consider a complete D-ary tree and concentrateon |[P(X, = 1| Xy =1) — P(X, = 1)|.
For simplicity of notation, let § £ 13%2. For a tree of depth d, let a(d) = P(X, = 1| X = 1).

We have that

(exp(B)a(d) + exp(=0) (1 — a(d)))”

a(d+1) = D 5
(exp(0)a(d) + exp(—0) (1 — a(d)))” + (exp(—b)a(d) + exp(0) (1 — a(d)))

Using some algebraic manipulations and substituting the value of 6, we obtain

warn-f<en(23) o

and the result follows. [ |

We need the following lemma to prove Lemma 11.

Lemma 15 Consider a tree Ising model T', with root node r, set of leaves L and maximum
degree D. Let P be its probability measure. Suppose the absolute values of the edge param-
eters are bounded by |0;;] < 13%2 vV {i,j} € T. Then, Ve such that c is a child of v, we have

that |P(z¢ | zr,xp) — Pz | 2,)| < 4exp(—lO§2d(r, L)) V., xj,xr.

Proof Using Lemma 9 we can assume without loss of generality that the parameters 0;;
on all the edges are positive. (z.,x,) can take values (£1,+1). For each of those values,
the value of x, that maximizes |P(z. | x,,xp)—

P(z. | x,)| either maximizes or minimizes P(x. | z,,zr). Noting from (a slight extension
to) Lemma 13 that P(x. | z,, 1) is monotonic in xy, it suffices to consider the eight pos-
sibilities [P(X, = +1 | X, = +1, X, = £1)—

P(X.=+1| X, = £1)|. We show how to calculate the above value for z. = 1,2, = 1,2 =
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1. Interested readers can check that the conclusions below apply to all the other cases as
well. Using Lemma 13, we can assume that the parameters ;; on all the edges except

the edge {r,c} are equal to 1;%2 and consider a complete D-ary tree. Let 6 = 0,.. We

know that P(X, =1 | X, = 1) = WS{;(_G). Let d be the(;i)el();hl)of the tree and
A ex ala—

bd) = P(X.=1| X, =1,X; =1). We have b(d) = exp(@)a(d—1)2—exp(—0)(1—a(d—1)) where

a(d) is as defined in Lemma 14. Using some algebraic manipulations, it can be shown that

‘b(d) - %‘ <2la(d—1) - %|. Using Lemma 14 finishes the proof. [ ]

Proof [Lemma 11] Using Lemma 15, we have
|P($TaxN1(r)7$N2(r) | $L) - P(IET’le(r)a:ENQ(T))l

= \P(x, |z1) [ Plajlarzr) [] Pl |z ar)

JENI(r) keN2(r)
— P(xy) H P(z; | ) H P(ay | )
JENI(r) kEN2(r)

< 2D*+3 oxp (—1°§2 (d(r, L) — 1))
= cexp (—l°§2d(r, L))

proving the result. [ ]

Proof [Proposition 4] Let I £ {i} U N'(i) U N2(i). Let B be a set that separates I and
A such that d(I,B) = min(d(i, A),§ — 1). Let J be the component of nodes containing I
when the graph is separated by B. We know that the induced subgraph on J U B is a tree.
Applying Lemma 11 on this tree and using Lemma 8, we obtain |P(z; | xg) — P(z1 | )| <
2cexp(—%d(I,B)) Var,xp,Tp. Since P(xy) is a weighted average of P(x; | xp) for
various x g, we have

log 2
|P(xr | xp) — P(x1)| < 2cexp(— &

d(I’ B)) Ve, xp

The result then follows since P(x; | x4) is a weighted average of P(z; | ). [ |

Proof [Lemma 12] Let the graphical model be denoted by G(V, E), ®(z;,x;) £ exp(0ijzix;)
denote the potential on edge {7, j} when X; = x; and X; = x; and ®(z4) denote the poten-
tial due to all edges with both vertices in A when X4 = x4, VA C V. In the following, we
assume that the girth of the graph is g > 4. Consider a node ¢ and a subset of its neighbors
J1,- " ,Jk, 2 and a node w which is a neighbor gf z. We know that the pairwise potentials
satisfy exp(—v) < ®(z,2;) < exp(y). Let B 2 B\ {{i, 1}, gkt i, 2, {2, w) )
and consider the graph G(V,FE) with the same potentials on all edges as in G. Let
A2 {i,j1,-+* ,Jk,2,w} and choose any other set B C V. Let P and P be the proba-
bility mass functions corresponding to G and G respectively. Similarly let d(i,j) and J(z, 7)

24



be the distance between ¢ and j in G and G respectively. Suppose further that d(i, B) = d.
Then, d(i, B) > d(A, B) = d. Note that,

v 1 P(xa,xp)
Plzp,zp) = c————— 11
( ) Z ®(za) =
1
where Z is an appropriate normalizing constant. Note that E (I) E P (xa) = 1.

It follows from this that exp(—y) < % < exp(y). Using (11), the hypothes&s that an Ising
model has almost exponential correlation decay, we obtain the following inequalities after
some algebraic manipulations,

Pea,zp) — Paa)Plep)| < 2P+ exp(4y) exp(—a min(d, %))p(@) (12)

P(xp) > exp(—27) (1 — 22 ¢ exp(—amin(d, g;2))> P(zp) (13)

Vx4, 2p.Combining (12) and (13), we obtain

) g

exp(—a min(d, )
1 — 2D+2¢cexp(— amln(d gT))P(xB)

|Pea,zp) — Plaa)Plag)] < 2P exp(67)

and subsequently by marginalizing, we obtain

exp(—amin(d, %))

: -2
1 — 2P+2cexp(—amin(d, 457))

|P(as, 2p) — Pla:) Pxp)| < 2P+ exp(67) P(zp)

Let A’ = A \ {i}. Since d(i, A)

= e have that d(i, A’) > g — 2. So, 3 B C V separating
i and A’ in G such that d(i, B) 2

i T A

Pz | xar) — P(xs)

Z (]5(561 | zp) — ]5(932)) P(zp | za)

B

-2
ol

2D+4 exp(— )
<2t eXp(67)1—2D+2cexp(2—agT_2)

< 27(D+6) exp(—29(D + 1)) |sinh(28)] 2 ¢

where the last inequality follows from the lower bound on girth g in the hypothesis.

Now consider the graph é(V E) where E 2 {{i,j1},--,{i,ju}, {i, 2}, {z,w}}. Let the
potentials on the edges in G be the same as those in G and denote the correspondmg
probability mass function by P. Clearly, we have the following relation between P, P and

P.

P(z4) = %ﬁ(m)ﬁ(m) V4
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where Z is an appropriate normalizing constant. Using (14) and the symmetry of the Ising
for x; = £1), we obtain

model (i.e., P(z;) = :

P(.’L’l ’ (L’A/)

<

P(xiva/)
P(z4r) _
s P(:cl,xA/)P(ml,zA/)

¥ Z P(zi,x.4)P(1,2.0)

P a:l,arA/)P(acZ ;L’A/)

ZP i | wa)Plwar)P(zi, )

P(ivz\xA P(xi|z 1)

—é
1+26P($z | I'A/)

after some algebraic manipulations. Similarly, we also have

which implies

P(z; | xpa) >

‘P(xi | zar) — Pla: | z.40)

2E~
1+ 2¢

(xz ‘ I’A/)

< 8¢

Finally, letting A* 2 A’\ {z}, we have,

H(X; | Xa) -

H(X; [ Xar)

_ZPxA/ Zsz!ﬂfA’ 10g< ((;U ||;Uj))>

P(Xi | za)||P(Xi | 2a+))

Y

Y

P(x4+)

*21§g22PwA/ Z|P zi | 2ar) = Plai | wae)
1) P(za- ZP x| @ g Z|P zi | wa) — Plx; | max)]?
1
Z P(:L‘A*)II%IHP(.%Z ] xA*)§]P(xi | 2 g0, = —1) — P(a; | xax, 2, = 1)|?

exp(—yD)

, N(xl- | zg»,x, = —1) ff’(xz | zpx, @, = 1)‘ — 16€)>

exp(yD) + exp(—vD)

2

2

inh(2 29D 2

> exp(—6’yD) sinh2(2ﬁ)

So, we have shown that under the given conditions, an Ising model satisfies (3) with € =
35 exp(—6vD) sinh?(23). Tt is straightforward to note that the above proof can also be
used to show that the Ising model also satisfies (4) with the same €, completing the proof

of the lemma.
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Proof [Theorem 7] The theorem follows directly from Theorem 2, Proposition 4 and Lemma
12. [ ]
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